Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks

نویسندگان

  • Adam E. Jakus
  • Katie D. Koube
  • Nicholas R. Geisendorfer
  • Ramille N. Shah
چکیده

Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 μm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young's moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks

Inks comprised of metallic Fe or Ni powders, an elastomeric binder, and graded volatility solvents are 3D-printed via syringe extrusion and sintered to form metallic cellular structures. Similar structures are created from Fe2O3 and NiO particle-based inks, with an additional hydrogen reduction step before sintering. All sintered structures exhibit 92–98% relative density within their struts, w...

متن کامل

Discovery of Discrete Structured Bubbles within Lunar Regolith Impact Glasses

The unusual morphology and internal structure of bubbles within lunar regolith impact glasses have been studied using traditional scanning electron microscopy and the novel technique transmission X-ray microscopy (TXM), with 3D tomography reconstruction. Here, we show the previously unknown phenomenon of building a highly porous cellular structure within bubbles in glassy particles of the dust ...

متن کامل

Mars Regolith Thermal and Electrical Properties: Initial Results of the Phoenix Thermal and Electrical Conductivity Probe (tecp)

Background: Phoenix was the first Martian lander to operate at polar latitudes, affording a unique opportunity to study the current climate, and the role of surfaceatmosphere exchange. The Thermal and Electrical Conductivity Probe (TECP), a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) made the first-ever in-situ measurements of the thermal and electrical prope...

متن کامل

Lightweight 3D cellular composites inspired by balsa

Additive manufacturing technologies offer new ways to fabricate cellular materials with composite cell walls, mimicking the structure and mechanical properties of woods. However, materials limitations and a lack of design tools have confined the usefulness of 3D printed cellular materials. We develop new carbon fiber reinforced, epoxy inks for 3D printing which result in printed materials with ...

متن کامل

A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.

Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017